Solve the equation for 0<x<360 2csc^2x-cot^4x=-1?

1 Answer
Mar 19, 2018

#theta=cos^-1(1/sqrtsqrt2), 2pi-cos^-1(1/sqrtsqrt2)#

Explanation:

Given:
#2csc^2x-cot^4x=-1#
#cscx=1/sinx#

#cotx=cosx/sinx#

#2(1/sinx)^2-(cosx/sinx)^4=-1#

#2/sin^2x-cos^4x/sin^4x=-1#

Multiplying throughout by #sin^4x#

#2sin^2x-cos^4x=-sin^4x#
Transposing

#2sin^2x=cos^4x+sin^4x#

#cos^4x+sin^4x=(cos^2x+sin^2x)^2-2cos^2xsin^2x#

#2sin^2x=(cos^2x+sin^2x)^2-2cos^2xsin^2x#

#cos^2x+sin^2x=1#

#2sin^2x=(1)^2-2cos^2xsin^2x#

#2sin^2x=1-2cos^2xsin^2x#

If
#u=cos^2x#
#1-u=sin^2x#

Substituting

#2(1-u)=1-2u(1-u)#

#2-2u=1-2u+2u^2#

#2u^2-2u+2u+1-2=0#

#2u^2-1=0#

#2u^2=1#

#u^2=1/2#

#u=+-(1/sqrt2)#

#u=cos^2x#

#cos^2x=+-(1/sqrt2)#

Considering only positive value for real numbers

#cos^2x=1/sqrt2#

#cosx=+-(1/sqrtsqrt2)#

#theta=cos^-1(1/sqrtsqrt2), 2pi-cos^-1(1/sqrtsqrt2)#