Solve the equation for 0<x<360 2csc^2x-cot^4x=-1?

1 Answer
Mar 19, 2018

θ=cos1(12),2πcos1(12)

Explanation:

Given:
2csc2xcot4x=1
cscx=1sinx

cotx=cosxsinx

2(1sinx)2(cosxsinx)4=1

2sin2xcos4xsin4x=1

Multiplying throughout by sin4x

2sin2xcos4x=sin4x
Transposing

2sin2x=cos4x+sin4x

cos4x+sin4x=(cos2x+sin2x)22cos2xsin2x

2sin2x=(cos2x+sin2x)22cos2xsin2x

cos2x+sin2x=1

2sin2x=(1)22cos2xsin2x

2sin2x=12cos2xsin2x

If
u=cos2x
1u=sin2x

Substituting

2(1u)=12u(1u)

22u=12u+2u2

2u22u+2u+12=0

2u21=0

2u2=1

u2=12

u=±(12)

u=cos2x

cos2x=±(12)

Considering only positive value for real numbers

cos2x=12

cosx=±(12)

θ=cos1(12),2πcos1(12)