You have #sin B=8/17# and #cosA=12/13.#
From this information, compute #cosB and sin A#
#sinA=sqrt(1-cos^2A)=5/13#
#cos B=sqrt(1-sin^2B)=15/17#
So, #tanA=sinA/cosA=5/12# and
#tanB=sinB/cosB=8/15#
#color(blue) sin(A+B) color(blue)= color(blue)(sinAcosB+cosAsinB#
#color(blue)(=5/13*15/17+12/13*8/17= 171/221#
#color(green)(cos(A+B)=sinAsinB-cosAcosB#
#color(green)(=12/13*15/17-5/13*8/17=140/221#
#color(brown)(tan(A+B)=(tanA+tanB)/(1-tanAtanB)#
#color(brown)(=(5/12+8/15)/(1-5/12*8/15)=171/180*9/7=171/140#