If |z| = Max{|z-2|,|z+2|}|z|=Max{|z2|,|z+2|}, then?

A) |z+barz| = 1|z+¯z|=1
B)z+barz=2^2z+¯z=22
C)|z+barz| = 2|z+¯z|=2
D) None of these

1 Answer
Mar 21, 2018

C)

Explanation:

This is equivalent to:

Determine x,yx,y such that

x^2+y^2 = max((x-2)^2+y^2, (x+2)^2+y^2)

which is equivalent to

x^2 = max((x-2)^2, (x+2)^2) or

x^2=(xpm 2)^2 rArr 0 = pm 4x+4rArr x = pm 1 then

x^2=max((x-2)^2, (x+2)^2) rArr x = pm 1

So this gives a two lines set

{-1,y} and {1,y} or z_1 = 1+i y and z_2 = -1+i y

then we have

z_1 + bar z_1 = 2 rArr abs(z_1 + bar z_1)= 2 and
z_2 + bar z_2 = -2 rArr abs(z_2 + bar z_2)= 2

so the answer is C)