How do you use implicit differentiation to find the slope of the line tangent to y+ lnxy=4y+lnxy=4 at (.25, 4)?

1 Answer
Mar 21, 2018

dy/dx=-16/5dydx=165 =[3.2[3.2] [The gradient]

Explanation:

y+lnxy=4y+lnxy=4, so by the theory of logs, y+ lnx+lny=4y+lnx+lny=4

Differentiating both sides of the equation implicitly with respect to x,....... dy/dx+1/x+1/ydy/dx=0dydx+1x+1ydydx=0, Therefore,

dy/dx[1+1/y]=-1/xdydx[1+1y]=1x...... so dy/dx=-y/[x[y+1]]dydx=yx[y+1] and substituting for x=0.25 and y=4x=0.25andy=4 will give the above result for the gradient.