If cos(x-y),cos(x),cos(x+y) are in H.P then the value of cox(x)sec(y/2) is ?

1 Answer

Because they are in Harmonic Progress (H.P.) we have

1/cos(x+y)+1/cos(x-y)=2/cosx1cos(x+y)+1cos(xy)=2cosx

Hence

cosx*[cos(x+y)+cos(x-y)]=2*cos(x+y)*cos(x-y)cosx[cos(x+y)+cos(xy)]=2cos(x+y)cos(xy)

cos^2x*cosy=cos^2x-sin^2ycos2xcosy=cos2xsin2y

cos^2x=cosy+1cos2x=cosy+1

cos² x = 2 cos² (y/2)

(cos²x) / (cos²(y/2)) = 2

cos² x. sec² (y/2) = 2

Taking absolute values we have

|cosx*sec(y/2)|=sqrt2

or

cosx*sec(y/2)=+-sqrt2