How do you find the derivative of 2sec((3x+1)^(1/2))?

1 Answer
Mar 23, 2018

3*{sec[sqrt(3x+1)]*tan[sqrt(3x+1)]}/[sqrt(3x+1)]

Explanation:

2 d/dx sec[sqrt(3x+1)]

=2 {[secsqrt(3x+1)]*[tansqrt(3x+1)]}*d/dx [sqrt(3x+1)]}

=2*{[sec sqrt(3x+1)]*[tan sqrt(3x+1)]}*{1/[2(sqrt (3x+1)]}*d/dx(3x+1)}

=2*{[sec sqrt(3x+1)]*[tan sqrt(3x+1)]}*[1/[2(sqrt (3x+1)]]*(3(1)+0)}

=2*{[sec sqrt(3x+1)]*[tan sqrt(3x+1)]}*{1/[2*sqrt (3x+1)]}*3