How do you rationalize the denominator and simplify #( 3sqrt6 + 5sqrt2)/(4sqrt6 - 3sqrt2)#?

1 Answer
Mar 23, 2018

#(102 + 29sqrt(12))/(78)#

Explanation:

#color(white)(xx)(3sqrt(6) + 5sqrt(2))/(4sqrt(6) - 3sqrt(2))#

#= ((3sqrt(6) + 5sqrt(2))(4sqrt(6) + 3sqrt(2)))/((4sqrt(6) - 3sqrt(2))(4sqrt(6) + 3sqrt(2)))#

[Multiply Both Numerator and Denominator by #(4sqrt(6) + 3sqrt(2))#]

#=(72 +20sqrt(12) + 9sqrt(12) + 30)/((4sqrt(6))^2 - (3sqrt(2))^2)#

#= (102 + 29sqrt(12))/(96 - 18)#

#= (102 + 29sqrt(12))/(78)#

Hence explained.