P and Q are the roots of 3x*2-12x+6. Find 1/p*2 - 1/q*2 ?

2 Answers
Mar 24, 2018

1/p^2-1/q^2=2sqrt2.....( p < q ).
Hint: (x-y)^2=x^2+y^2-2xy=x^2+2xy+y^2-4xy
=>(x-y)^2=(x+y)^2-4xy
please use '^' instead of ' * ' . i.e.x^2 tox^2 and not x*2

Explanation:

I think your quadratic equation is

3x^2-12x+6=0.

Comparing with ax^2+bx+c=0,we get

a=3, b=-12 and c=6

If the roots of this equn. are p and q , then

p+q=-b/a and pq=c/a

i.e.p+q=-(-12)/3=4 and pq=6/3=2
Now,
1/p^2-1/q^2=(q^2-p^2)/(p^2q^2)=((q+p)(q-p))/(pq)^2,....( p < q)

=>1/p^2-1/q^2=((4)sqrt((q-p)^2))/2^2=sqrt((q-p)^2

=>1/p^2-1/q^2=sqrt((q+p)^2-4pq)=sqrt(4^2-4(2)

=>1/p^2-1/q^2=sqrt(16-8)=sqrt8=2sqrt2....( p < q)

Mar 24, 2018

3x^2-12x+6=0
=>x^2 - 4x +2=0

Roots, x=(-b+-sqrt(b^2-4ac))/(2a)

x=(4+-sqrt(16-4*1*2))/(2)

x=(4+-sqrt(8))/(2) = (4+-2sqrt(2))/(2)

x=(2+-2sqrt(2))

To find, 1/p^2 - 1/q^2

=>(1/p+1/q)(1/p-1/q)

=>(1/(2+2sqrt(2))+1/(2-2sqrt(2)))(1/(2+2sqrt(2))-1/(2-2sqrt(2)))

=>(((2-2sqrt(2))+(2+2sqrt(2)))/((2-2sqrt(2))(2+2sqrt(2))))(((2-2sqrt(2))-(2+2sqrt(2)))/((2-2sqrt(2))(2+2sqrt(2))))

=>(((2+2))/((2-2sqrt(2))(2+2sqrt(2))))(((-2sqrt(2)-2sqrt(2)))/((2-2sqrt(2))(2+2sqrt(2))))

=>((4(-4sqrt2))/((4-8))^2)

=>((4(-4sqrt2))/(-4)^2)

=>(-sqrt2)