How do you simplify # 7div(sqrt6 – 5)#?

2 Answers
Mar 24, 2018

#7/(sqrt(6)-5)=-7*(sqrt(6)+5)/19#

Explanation:

[0]#7/(sqrt(6)-5)=(7*(sqrt(6)+5)/((sqrt(6)-5)(sqrt(6)+5))) #,
[1]#7/(sqrt(6)-5)=7*(sqrt(6)+5)/(6-25)#,
[2]#7/(sqrt(6)-5)=-7*(sqrt(6)+5)/19#

\0/ Here's the answer !

#-(7sqrt6+35)/19#

Explanation:

Rationalize the denominator (no radicals) by multiplying the numerator and denominator by #sqrt6+5#.

#7/(sqrt(6)-5# * #(sqrt(6)+5)/(sqrt(6)+5)#

#(7sqrt6+35)/-19#

#-(7sqrt6+35)/19#