What is the distance between #(-4,-11)# and #(13,-41)#?

3 Answers
Mar 26, 2018

Distance#=34.482...#

Explanation:

Apply Pythagorean theorem, where #d# is the distance between the two points.

#d=sqrt((13--4)^2+(-41--11)^2)#
#color(white)(d)=sqrt((17)^2+(-30)^2)#
#color(white)(d)=sqrt(1189)#
#color(white)(d)=34.482...#

Mar 26, 2018

Explanation:

#D=sqrt((y_2-y_1)^2+(x_2-x_1)^2#

subbing in

#D=sqrt((-41-(-11))^2+(13-(-4))^2)#
#D=sqrt(900+289)#
#D=sqrt(1189) units#

Mar 26, 2018

#d = sqrt 1189#

Explanation:

distance between #A(x_1, y_1) and (x_2, y_2)#:

#d = sqrt((x_1-x_2)^2 + (y_1-y_2)^2) = sqrt((x_2-x_1)^2 + (y_2-y_1)^2) #

in this case : #d = sqrt((-4 - 13)^2 + (-11-(-41))^2)#

#d = sqrt (289 + 900) = sqrt 1189#