What is the derivative of this function y=sin x(e^x)y=sinx(ex)?

2 Answers
Mar 26, 2018

dy/dx = e^x (cosx + sinx)dydx=ex(cosx+sinx)

Explanation:

dy/dx = cosx xx e^x + e^x xx sinxdydx=cosx×ex+ex×sinx

dy/dx = e^x (cosx + sinx)dydx=ex(cosx+sinx)

Mar 26, 2018

e^xSin(x)+e^xCos(x)exsin(x)+excos(x)

Explanation:

f(x)=e^xSin(x)=e^x times Sin(x)f(x)=exsin(x)=ex×sin(x)

Using the product rule

f'(x)=uv'+vu'

u=Sin(x)
u'=Cos(x)

v=e^x
v'=e^x

Hence:
f'(x)=e^xSin(x)+e^xCos(x)