How do you use the chain rule to differentiate f(x)=sin(1/(x^2+1))?

1 Answer
Mar 26, 2018

See below

Explanation:

f(x)=Sin(1/(x^2+1))

f(x)=Sin(u)

f'(x)=Cos(u) times u'

u=1/(x^2+1)=(x^2+1)^-1

(Substitute again to include the inner function)

v=x^2+1
v'=2x

u'=-1(v')(v)^-2=-1(2x)(x^2+1)^-2=(-2x)/(x^2+1)^2

Hence:

f'(x)=((-2x)/(x^2+1)^2)Cos(1/(x^2+1))