How do you solve # sin(x) + sin 2(x) = 0#?

2 Answers
Mar 26, 2018

#x={2n\pi}/3# or #x=(2n+1)\pi#.

Explanation:

Use the trigonometric sum product relation:

#\sin(u) +\sin(v) = 2 \sin({u+v}/2)\cos({u-v}/2)#

#\sin(2x) +\sin(x) = 0 = 2 \sin({3x}/2)\cos({x}/2)#

Then either factor may he zero.

#\sin({3x}/2)=0; {3x}/2n\pi; x={2n\pi}/3#

Or:

#cos(x/2)=0; x/2={(2n+1)\pi}/2; x=(2n+1)\pi#

In both cases #n# is any integer.

Mar 27, 2018

#x = kpi#
#x = +- (2pi)/3 + 2kpi#

Explanation:

Replace in the equation (sin 2x) by 2sinx.cos x -->
sin x + 2sin x.cos x = 0
sin x(1 + 2cos x) = 0
Either factor should be zero.

a. sin x = 0
x = 0, #x = pi#, #x = 2pi# -->
General: # x = kpi#
b. 2cos x + 1 = 0 --> #cos x = -1/2#
Trig table and unit circle give 2 solutions:
#x = +- (2pi)/3#
General answers:
#x = +- (2pi)/3 + 2kpi#