How do you find the asymptotes for h(x) = (2x - 1)/ (6 - x)h(x)=2x16x?

1 Answer
Mar 27, 2018

vertical asymptote: x = 6x=6
horizontal asymptote: y = -2y=2

Explanation:

To find the vertical asymptote, set the denominator of the function equal to zero and solve for x:

6-x = 06x=0
-x = -6x=6
x = 6x=6

To find the horizontal asymptote(s), find the following limits:

y = \lim_{x\to infty}(frac{frac{2(x)}{(x)}-frac{1}{(x)}}{frac{6}{(x)}-frac{(x)}{(x)}}) = (frac{2-0}{0-1}) = frac{2}{-1} = -2

y = \lim_{x\to -infty}(frac{frac{2(-x)}{(-x)}-frac{1}{(-x)}}{frac{6}{(-x)}-frac{(-x)}{(-x)}}) = (frac{2+0}{0-1}) = frac{2}{-1} = -2