What is the derivative of f(x) = sqrt[ (3 x + 1) / (5 x^2 + 1) ]?

1 Answer
Mar 27, 2018

Use chain rule: if f(x)=h(g(x)) the derivative isf'(x)=h'(g(x))*g'(x)
and quotient rule:
(f/g)^'={\frac {f'g-fg'}{g^{2}}} where g!=0

Explanation:

f'(x)=(((3 x + 1)/ (5 x^2 + 1))^(1/2))^'
=1/2*((3 x + 1)/ (5 x^2 + 1))^(-1/2)*((3 x + 1)/ (5 x^2 + 1))^'

Lets calculate ((3 x + 1)/ (5 x^2 + 1))^' separately

((3 x + 1)/ (5 x^2 + 1))^'=
=((3 x + 1)^'* (5 x^2 + 1)-(3 x + 1)*(5 x^2 + 1)^')/((5 x^2 + 1)^2)=

=(3 * (5 x^2 + 1)-(3 x + 1)*10x)/((5 x^2 + 1)^2)
=(15x^2+3-30x^2-10x)/((5 x^2 + 1)^2)=
=(-15x^2-10x+3)/((5 x^2 + 1)^2)

The result is:
f'(x)=(-15x^2-10x+3)/(2(5 x^2 + 1)^2 ((3 x + 1)/ (5 x^2 + 1))^(1/2)