Solve 1/1+i in polar form ?

3 Answers
Mar 28, 2018

#1/(1+i)=sqrt2/2[cos(-pi/4)+isin(-pi/4)]#

Explanation:

We are asked to compute

#1/(1+i)#

and express the result in the form #r[costheta+isintheta]#.

First convert the numerator and denominator to polar form.

#1/(1+i)=(1[cos(0)+isin(0)])/(sqrt2[cos(pi/4)+isin(pi/4)])#

Now we can find the result like so:

#rArr1/sqrt2[cos(0-pi/4)+isin(0-pi/4)]#

#rArrsqrt2/2[cos(-pi/4)+isin(-pi/4)]#

Mar 28, 2018

#1/sqrt(2)(cos(-1/4pi)+isin(-1/4pi)#

Explanation:

The method Sharkbasket used is completly right, this is just a second way...
#1/(1+i)->#
#"Expand the fraction by" (1-i) #
#"to get rid of the i in the denominator"#

#(1*(1-i))/((1+i)(1-i))=(1-i)/(1^2-i^2)=(1-i)/2=1/2-i/2#

From here on it is basicly the same...

#r=sqrt((1/2)^2+(1/2)^2)=sqrt(2/4)=1/sqrt(2)#
#theta=tan^-1((1/2)/(-1/2))=tan^-1(-1)=-1/4pi#

#1/sqrt(2)(cos(-1/4pi)+isin(-1/4pi)#

Mar 28, 2018

see a solution process below;

Explanation:

#1/1+i #

#1# in polar form #= 1(cos0 + isin0)#

Where;

#1=r=sqrt(1+0) =1#

#theta = tan-¹0 =0#

#r=√(1+1) =√2#

#theta = tan-¹(1/1)=45#

Now;

#1/1+i =[1(cos0 +isin0)]/[sqrt2(cos45 +isin45)]#

By complex analysis we have;

#1/sqrt2[cos(0-45) +isin(0-45)]#

Therefore;

#1/1+i = (sqrt2)/2[cos45 -isin45]#

Note: #cos(-theta)=costheta#