Solve 1/1+i in polar form ?

3 Answers
Mar 28, 2018

1/(1+i)=sqrt2/2[cos(-pi/4)+isin(-pi/4)]11+i=22[cos(π4)+isin(π4)]

Explanation:

We are asked to compute

1/(1+i)11+i

and express the result in the form r[costheta+isintheta]r[cosθ+isinθ].

First convert the numerator and denominator to polar form.

1/(1+i)=(1[cos(0)+isin(0)])/(sqrt2[cos(pi/4)+isin(pi/4)])11+i=1[cos(0)+isin(0)]2[cos(π4)+isin(π4)]

Now we can find the result like so:

rArr1/sqrt2[cos(0-pi/4)+isin(0-pi/4)]12[cos(0π4)+isin(0π4)]

rArrsqrt2/2[cos(-pi/4)+isin(-pi/4)]22[cos(π4)+isin(π4)]

Mar 28, 2018

1/sqrt(2)(cos(-1/4pi)+isin(-1/4pi)12(cos(14π)+isin(14π)

Explanation:

The method Sharkbasket used is completly right, this is just a second way...
1/(1+i)->11+i
"Expand the fraction by" (1-i) Expand the fraction by(1i)
"to get rid of the i in the denominator"to get rid of the i in the denominator

(1*(1-i))/((1+i)(1-i))=(1-i)/(1^2-i^2)=(1-i)/2=1/2-i/21(1i)(1+i)(1i)=1i12i2=1i2=12i2

From here on it is basicly the same...

r=sqrt((1/2)^2+(1/2)^2)=sqrt(2/4)=1/sqrt(2)r=(12)2+(12)2=24=12
theta=tan^-1((1/2)/(-1/2))=tan^-1(-1)=-1/4piθ=tan1(1212)=tan1(1)=14π

1/sqrt(2)(cos(-1/4pi)+isin(-1/4pi)12(cos(14π)+isin(14π)

Mar 28, 2018

see a solution process below;

Explanation:

1/1+i 11+i

11 in polar form = 1(cos0 + isin0)=1(cos0+isin0)

Where;

1=r=sqrt(1+0) =11=r=1+0=1

theta = tan-¹0 =0

r=√(1+1) =√2

theta = tan-¹(1/1)=45

Now;

1/1+i =[1(cos0 +isin0)]/[sqrt2(cos45 +isin45)]

By complex analysis we have;

1/sqrt2[cos(0-45) +isin(0-45)]

Therefore;

1/1+i = (sqrt2)/2[cos45 -isin45]

Note: cos(-theta)=costheta