How do you solve #(3x-1)/(5x+4 )= 4#?
2 Answers
Explanation:
#"to eliminate the fraction multiply both sides by "5x+4#
#cancel(5x+4)xx(3x-1)/cancel(5x+4)=4(5x+4)#
#rArr3x-1=4(5x+4)larrcolor(blue)"distribute"#
#rArr3x-1=20x+16#
#"subtract "20x" from both sides"#
#3x-20x-1=cancel(20x)cancel(-20x)+16#
#rArr-17x-1=16#
#"add 1 to both sides"#
#-17xcancel(-1)cancel(+1)=16+1#
#rArr-17x=17#
#"divide both sides by "-17#
#(cancel(-17) x)/cancel(-17)=(-17)/17#
#rArrx=-1#
#color(blue)"As a check"# Substitute this value into the left side of the equation and if equal to the right side then it is the solution.
#(-3-1)/(-5+4)=(-4)/(-1)=4=" right side"#
#rArrx=-1" is the solution"#
therefore
Explanation:
you firstly dissolve the denominator on the left side by multiplying with