How do you factor the expression #3x^2 + 3 + x^3 + x#?

2 Answers
Mar 28, 2018

#color(magenta)(=(3+x)(x^2+1)#

Explanation:

#3x^2+3+x^3+x#

Grouping the #1^(st)# #2# terms together and the #2^(nd# #2# together, we get:

#=3(x^2+1)+x(x^2+1)# (taking out common factors)

#color(magenta)(=(3+x)(x^2+1)#

~Hope this helps! :)

Mar 28, 2018

#(x^2+1)(3+x)#

Explanation:

#"factorise in 'groups'"#

#[3x^2+3]+[x^3+x]#

#=color(red)(3)(x^2+1)color(red)(+x)(x^2+1)#

#"take out the "color(blue)"common factor "(x^2+1)#

#=(x^2+1)(color(red)(3+x))#

#rArr3x^2+3+x^3+x=(x^2+1)(3+x)#