The complex conjugate of a complex number is of the form #(a + bi)^(ast) = a - bi#.
We have: #frac(3 + 2i)(1 - i) = frac(3 + 2i)(1 + (- i))#
To perform division on complex numbers we multiply the numerator and denominator of the fraction by the denominator's complex conjugate.
This turns the denominator into a real number, allowing the fraction to be expressed in the form #a + bi#.
#= frac(3 + 2i)(1 - i) cdot frac(1 - (- i))(1 - (- i))#
#= frac(3 + 2i)(1 - i) cdot frac(1 + i)(1 + i)#
#= frac(3 + 3 i + 2i - 2i^(2))(1^(2) - i^(2))#
#= frac(3 - 2 (- 1) + (3 + 2)i)(1 - (- 1))#
#= frac(3 + 2 + 5i)(1 + 1)#
#= frac(5 + 5i)(2)#
#= frac(5)(2) + frac(5)(2)i#
#therefore (frac(5)(2) + frac(5)(2)i)^(ast) = frac(5)(2) - frac(5)(2)i#
Therefore, the complex conjugate of #frac(3 + 2i)(1 - i)# is #frac(5)(2) - frac(5)(2)i#.