Find the complex conjugate of (3+2i)/(1-i)3+2i1i ?

1 Answer
Mar 29, 2018

frac(5)(2) - frac(5)(2)i5252i

Explanation:

The complex conjugate of a complex number is of the form (a + bi)^(ast) = a - bi(a+bi)=abi.

We have: frac(3 + 2i)(1 - i) = frac(3 + 2i)(1 + (- i))3+2i1i=3+2i1+(i)

To perform division on complex numbers we multiply the numerator and denominator of the fraction by the denominator's complex conjugate.

This turns the denominator into a real number, allowing the fraction to be expressed in the form a + bia+bi.

= frac(3 + 2i)(1 - i) cdot frac(1 - (- i))(1 - (- i))=3+2i1i1(i)1(i)

= frac(3 + 2i)(1 - i) cdot frac(1 + i)(1 + i)=3+2i1i1+i1+i

= frac(3 + 3 i + 2i - 2i^(2))(1^(2) - i^(2))=3+3i+2i2i212i2

= frac(3 - 2 (- 1) + (3 + 2)i)(1 - (- 1))=32(1)+(3+2)i1(1)

= frac(3 + 2 + 5i)(1 + 1)=3+2+5i1+1

= frac(5 + 5i)(2)=5+5i2

= frac(5)(2) + frac(5)(2)i=52+52i

therefore (frac(5)(2) + frac(5)(2)i)^(ast) = frac(5)(2) - frac(5)(2)i

Therefore, the complex conjugate of frac(3 + 2i)(1 - i) is frac(5)(2) - frac(5)(2)i.