How do you evaluate [\frac { 3} { 2} - ( \frac { 1} { 2} - \frac { 3} { 4} ) ^ { 2} ] ^ { - 1} + [ ( 3+ \frac { 1} { 3} ) ^ { 2} - ( 3- \frac { 1} { 3} ) ^ { 2} ] ^ { - \frac { 1} { 2} }[32(1234)2]1+[(3+13)2(313)2]12?

1 Answer
Mar 29, 2018

[3/2-((2-3)/4)^2]^-1+[((9+1)/3)^2-((9-1)/3)^2]^(-1/2)[32(234)2]1+[(9+13)2(913)2]12

Explanation:

=[3/2-((-1)/4)^2]^-1+[((10)/3)^2-((8)/3)^2]^(-1/2)==[32(14)2]1+[(103)2(83)2]12=
=[3/2-1/8]^-1+[100/9-64/9]^(-1/2)==[3218]1+[1009649]12=
=[(12-1)/8]^-1+[(100-64)/9]^(-1/2)==[1218]1+[100649]12=
=[11/8]^-1+[36/9]^(-1/2)==[118]1+[369]12=
=1/[8/11]+1/[36/9]^(1/2)==1811+1[369]12=
=11/8+[9/36]^(1/2)==118+[936]12=
=11/8+[3^2/6^2]^(1/2)==118+[3262]12=
=11/8+3/6=11/8+1/2=(11+4)/8=15/8=118+36=118+12=11+48=158