How do you find the length of the curve x=t/(1+t)x=t1+t, y=ln(1+t)y=ln(1+t), where 0<=t<=20≤t≤2 ? Calculus Parametric Functions Determining the Length of a Parametric Curve (Parametric Form) 1 Answer AltairSafir Mar 30, 2018 s(K)=int_a^b (dot x^2(t) + dot y^2(t))^(1/2)dts(K)=∫ba(.x2(t)+.y2(t))12dt where: KK - parameterized curve K(x(t),y(t))K(x(t),y(t)) tt - parameter ss - lenght [a,b][a,b] - interval of the parameter Explanation: a=0, b=2a=0,b=2 dot x=((1+t)-t*1)/(1+t)^2=1/(1+t)^2.x=(1+t)−t⋅1(1+t)2=1(1+t)2 dot y=1/(1+t).y=11+t s(K)=int_0^2 (((1/(1+t)^2)^2+ (1/(1+t))^2)^(1/2)) dt=s(K)=∫20⎛⎜ ⎜⎝⎛⎝(1(1+t)2)2+(11+t)2⎞⎠12⎞⎟ ⎟⎠dt= =int_0^2 ((1/(1+t)^4+ 1/(1+t)^2)^(1/2)) dt==∫20⎛⎜⎝(1(1+t)4+1(1+t)2)12⎞⎟⎠dt= =int_0^2 ((1+(1+t)^2)/(1+t)^4)^(1/2) dt==∫20(1+(1+t)2(1+t)4)12dt= =int_0^2 ((2+2t+t^2)/(1+t)^4)^(1/2) dt=∫20(2+2t+t2(1+t)4)12dt Answer link Related questions How do you find the arc length of a parametric curve? How do you find the length of the curve x=1+3t^2x=1+3t2, y=4+2t^3y=4+2t3, where 0<=t<=10≤t≤1 ? How do you find the length of the curve x=e^t+e^-tx=et+e−t, y=5-2ty=5−2t, where 0<=t<=30≤t≤3 ? How do you find the length of the curve x=3t-t^3x=3t−t3, y=3t^2y=3t2, where 0<=t<=sqrt(3)0≤t≤√3 ? How do you determine the length of a parametric curve? How do you determine the length of x=3t^2x=3t2, y=t^3+4ty=t3+4t for t is between [0,2]? How do you determine the length of x=2t^2x=2t2, y=t^3+3ty=t3+3t for t is between [0,2]? What is the arc length of r(t)=(t,t,t)r(t)=(t,t,t) on tin [1,2]t∈[1,2]? What is the arc length of r(t)=(te^(t^2),t^2e^t,1/t)r(t)=(tet2,t2et,1t) on tin [1,ln2]t∈[1,ln2]? What is the arc length of r(t)=(t^2,2t,4-t)r(t)=(t2,2t,4−t) on tin [0,5]t∈[0,5]? See all questions in Determining the Length of a Parametric Curve (Parametric Form) Impact of this question 8646 views around the world You can reuse this answer Creative Commons License