How do you find the length of the curve #x=t/(1+t)#, #y=ln(1+t)#, where #0<=t<=2# ? Calculus Parametric Functions Determining the Length of a Parametric Curve (Parametric Form) 1 Answer AltairSafir Mar 30, 2018 #s(K)=int_a^b (dot x^2(t) + dot y^2(t))^(1/2)dt# where: #K# - parameterized curve #K(x(t),y(t))# #t# - parameter #s# - lenght #[a,b]# - interval of the parameter Explanation: #a=0, b=2# #dot x=((1+t)-t*1)/(1+t)^2=1/(1+t)^2# #dot y=1/(1+t)# #s(K)=int_0^2 (((1/(1+t)^2)^2+ (1/(1+t))^2)^(1/2)) dt=# #=int_0^2 ((1/(1+t)^4+ 1/(1+t)^2)^(1/2)) dt=# #=int_0^2 ((1+(1+t)^2)/(1+t)^4)^(1/2) dt=# #=int_0^2 ((2+2t+t^2)/(1+t)^4)^(1/2) dt# Answer link Related questions How do you find the arc length of a parametric curve? How do you find the length of the curve #x=1+3t^2#, #y=4+2t^3#, where #0<=t<=1# ? How do you find the length of the curve #x=e^t+e^-t#, #y=5-2t#, where #0<=t<=3# ? How do you find the length of the curve #x=3t-t^3#, #y=3t^2#, where #0<=t<=sqrt(3)# ? How do you determine the length of a parametric curve? How do you determine the length of #x=3t^2#, #y=t^3+4t# for t is between [0,2]? How do you determine the length of #x=2t^2#, #y=t^3+3t# for t is between [0,2]? What is the arc length of #r(t)=(t,t,t)# on #tin [1,2]#? What is the arc length of #r(t)=(te^(t^2),t^2e^t,1/t)# on #tin [1,ln2]#? What is the arc length of #r(t)=(t^2,2t,4-t)# on #tin [0,5]#? See all questions in Determining the Length of a Parametric Curve (Parametric Form) Impact of this question 8172 views around the world You can reuse this answer Creative Commons License