int sqrt(x^2+5/x)=x2+5x=?

1 Answer
Mar 31, 2018

sqrt(x^2+5) +5/(2sqrt5) ln((sqrt(x^2+5)-sqrt5)/(sqrt(x^2+5)+sqrt5))+Cx2+5+525ln(x2+55x2+5+5)+C

Explanation:

Substitute x^2+5=u^2x2+5=u2. Then, 2xdx=2udu2xdx=2udu and thus dx/x =(udu)/x^2=(udu)/(u^2-5)dxx=udux2=uduu25.

So, our integral becomes

int sqrt(x^2+5)/x dx = int u (udu)/(u^2-5)x2+5xdx=uuduu25
qquad = int (u^2-5+5)/(u^2-5) = int (1+5/(u^2-5))du
qquad = u+5 int (du)/(u^2-(sqrt5)^2)= u + 5/(2sqrt5) ln((u-sqrt5)/(u+sqrt5))
qquad = sqrt(x^2+5) +5/(2sqrt5) ln((sqrt(x^2+5)-sqrt5)/(sqrt(x^2+5)+sqrt5))