Lim. f(x)=(x^2-x)/(2x^2 +5x-7) x → 1 Someone can help me ?

2 Answers
Mar 31, 2018

See below.

Explanation:

(x^2-x)/(2x^2 +5x-7) = (x(x-1))/(2(x+7/2)(x-1)) = x/(2(x+7/2))

then

lim_(x->1)(x^2-x)/(2x^2 +5x-7) = lim_(x->1)x/(2(x+7/2)) = 1/9

Mar 31, 2018

lim_(xrarr1) (x^2-x)/(2x^2+5x-7)=color(red)(1/9)

Explanation:

Note that in a case like the the object is always to reduce the numerator an denominator so that substitution of the limit value (in this case 1) does not result in the undefined form: 0/0.

After factoring
color(white)("XXX")x^2-x=x(x-1)
and
color(white)("XXX")2x^2+5x-7=(2x+7)(x-1)

Provided x is not quite equal to 1 (so that x-1!=0)
lim_(xrarr1) (x^2-x)/(2x^2+5x-7)

color(white)("XXX")=lim_(xrarr1) (xcancel(""(x-1)))/((2x+7)cancel(""(x-1)))

color(white)("XXX")=1/(2 * 1 +7)

color(white)("XXX")=1/9