Help me to find it please? I am studying for my midterm in real analysis and I got problem in it.

enter image source here

2 Answers
Apr 1, 2018

To find the limit without l'Hospital's Rules, use lim_(xrarroo)(1+1/x)^x = e

Explanation:

lim_(xrarroo)((x+1)/x)^(3x) = lim_(xrarroo)(1+1/x)^(3x)

= (lim_(xrarroo)(1+1/x)^x)^3

= e^3

Apr 1, 2018

lim_(x->oo) ((x+1)/x)^(3x) = e^3

Explanation:

Write the function as:

((x+1)/x)^(3x) = (e^ln((x+1)/x))^(3x) = e^(3x ln((x+1)/x)

Consider now the limit:

lim_(x->oo) 3x ln((x+1)/x)

This is in the indeterminate form 0*oo but we can reduce it to the form 0/0 by writing as:

lim_(x->oo) 3x ln((x+1)/x) = 3 lim_(x->oo) ln((x+1)/x) /(1/x)

and the use l'Hospital's rule:

lim_(x->oo) 3x ln((x+1)/x) = 3 lim_(x->oo) (d/dx ln((x+1)/x)) /(d/dx ( 1/x))

lim_(x->oo) 3x ln((x+1)/x) = 3 lim_(x->oo) (x/(x+1) (x-(x+1))/x^2) /(-1/x^2)

lim_(x->oo) 3x ln((x+1)/x) = 3 lim_(x->oo) x/(x+1) (-1/x^2) /(-1/x^2)

lim_(x->oo) 3x ln((x+1)/x) = 3 lim_(x->oo) x/(x+1) = 3

As e^x is a continuous function we then have:

lim_(x->oo) e^(3x ln((x+1)/x) )= e^((lim_(x->oo) 3x ln((x+1)/x) )) = e^3

graph{ ((x+1)/x)^(3x) [-1, 100, -2, 49.2]}