Help me to find it please? I am studying for my midterm in real analysis and I got problem in it.

enter image source here

2 Answers
Apr 1, 2018

To find the limit without l'Hospital's Rules, use #lim_(xrarroo)(1+1/x)^x = e#

Explanation:

#lim_(xrarroo)((x+1)/x)^(3x) = lim_(xrarroo)(1+1/x)^(3x) #

# = (lim_(xrarroo)(1+1/x)^x)^3 #

# = e^3#

Apr 1, 2018

#lim_(x->oo) ((x+1)/x)^(3x) = e^3#

Explanation:

Write the function as:

#((x+1)/x)^(3x) = (e^ln((x+1)/x))^(3x) = e^(3x ln((x+1)/x)#

Consider now the limit:

#lim_(x->oo) 3x ln((x+1)/x)#

This is in the indeterminate form #0*oo# but we can reduce it to the form #0/0# by writing as:

#lim_(x->oo) 3x ln((x+1)/x) = 3 lim_(x->oo) ln((x+1)/x) /(1/x)#

and the use l'Hospital's rule:

#lim_(x->oo) 3x ln((x+1)/x) = 3 lim_(x->oo) (d/dx ln((x+1)/x)) /(d/dx ( 1/x))#

#lim_(x->oo) 3x ln((x+1)/x) = 3 lim_(x->oo) (x/(x+1) (x-(x+1))/x^2) /(-1/x^2)#

#lim_(x->oo) 3x ln((x+1)/x) = 3 lim_(x->oo) x/(x+1) (-1/x^2) /(-1/x^2)#

#lim_(x->oo) 3x ln((x+1)/x) = 3 lim_(x->oo) x/(x+1) = 3#

As #e^x# is a continuous function we then have:

#lim_(x->oo) e^(3x ln((x+1)/x) )= e^((lim_(x->oo) 3x ln((x+1)/x) )) = e^3#

graph{ ((x+1)/x)^(3x) [-1, 100, -2, 49.2]}