Rewriting the given diff. eqn. (DE) as dy/dx-y=2xdydx−y=2x, we find
that it is a linear DE of the form : dy/dx+yP(x)=q(x)dydx+yP(x)=q(x).
To find its gen. soln. (GS), we need to multiply it by the
integrating factor (IF) e^(intP(x)dxe∫P(x)dx.
Since,
P(x)=-1, intP(x)dx=int-1dx=-x :." IF is "e^-x.
Multiplying the DE by IF, we get,
e^-xdy/dx-ye^-x=2xe^-x.
:. e^-x*d/dx(y)+y*d/dx(e^-x)=2xe^-x, or,
d/dx(y*e^-x)=2xe^-x.
:. y*e^-x=int2xe^-xdx+C,
=2[x*inte^-xdx-int{d/dx(x)inte^-xdx}dx]+C......[because," Integration by Parts]",
=2[x(-e^-x)-int(-e^-x)dx]+C,
=2[-xe^-x-e^-x]+C.
rArr" The GS is, "y*e^-x+2(x+1)e^-x=C, or,
y+2(x+1)=Ce^x.
Feel the Joy of Maths.!