Let
I=int1/(1+tanx)dx
I=intcosx/(cos+sinx)dx
cosx=l(cosx+sinx)+m(-sinx+cosx)+n
cosx=(l+m)cosx+(l-m)sinx+n
Equating the coefficients of cosx sinx and constants
l+m=1, l-m=0, n=0
l=1/2, n=1/2
cosx=1/2(cosx+sinx)+1/2(-sinx+cosx)+0
I=intcosx/(cos+sinx)dx
I=1/2int(cosx+sinx)/(cosx+sinx)dx+1/2int(-sinx+cosx)/(cosx+sinx)dx
I=1/2(I_1+I_2)
where,
I_1=int(cosx+sinx)/(cosx+sinx)dx=int1dx=x
I_1=x
I_2=int(-sinx+cosx)/(cosx+sinx)dx
let
t=cosx+sinx
dt/dx=-sinx+cosx
dt=(-sinx+cosx)dx
int(-sinx+cosx)/(cosx+sinx)dx=int((-sinx+cosx)dx)/(cosx+sinx)=intdt/t=lnt
I_2=ln(cosx+sinx)
I=1/2(I_1+I_2)
intcosx/(cos+sinx)dx=1/2(x+ln(cosx+sinx))+c