If tanx=-3/4 and 3Π/2<x<2Π,then value of sin2x?

1 Answer
Apr 2, 2018

sin(2x)=2425

Explanation:

We seek sin(2x) when tan(x)=34

By the double angle identity

sin(2x)=2sin(x)cos(x)

Let's express this in term of tangens

sin(2x)=2sin(x)cos(x)

sin(2x)=2sin(x)cos(x)1

sin(2x)=2sin(x)cos(x)sec2(x)sec2(x)

sin(2x)=2tan(x)sec2(x)

sin(2x)=2tan(x)1+tan2(x)

Now let tan(x)=34

sin(2x)=2(34)1+(34)2

sin(2x)=321+916

sin(2x)=321616+9

sin(2x)=3825

sin(2x)=2425