If tanx=-3/4 and 3Π/2<x<2Π,then value of sin2x?
1 Answer
Apr 2, 2018
sin(2x)=−2425
Explanation:
We seek
By the double angle identity
sin(2x)=2sin(x)cos(x)
Let's express this in term of tangens
sin(2x)=2sin(x)cos(x)
sin(2x)=2sin(x)cos(x)1
sin(2x)=2sin(x)cos(x)sec2(x)sec2(x)
sin(2x)=2tan(x)sec2(x)
sin(2x)=2tan(x)1+tan2(x)
Now let
sin(2x)=2(−34)1+(−34)2
sin(2x)=−321+916
sin(2x)=−32⋅1616+9
sin(2x)=−3⋅825
sin(2x)=−2425