How do you find dy/dx of y^2 = ln xy2=lnx and evaluate it at the point (e, 1)?

1 Answer
Apr 2, 2018

1/[2e12e

Explanation:

y^2=lnxy2=lnx. Need to differentiate both sides of this expression implicitly with respect to xx

d/dx[y^2=lnx]ddx[y2=lnx]=[d/dxy^2=d/dxlnx][ddxy2=ddxlnx].

d/dx y^2=2ydy/dxddxy2=2ydydx and d/dxlnx=1/xddxlnx=1x and so ,

2ydy/dx=1/x2ydydx=1x, i.e, dy/dx=1/[2yxdydx=12yx.....[1][1]

substituting x=e and y=1x=eandy=1 into .....[1][1] gives dy/dx=1/[2edydx=12e.
Hope this helps.