If 𝐴 = sqrt(1+cos 320°)/2 and 𝐵 = sqrt( 1−cos 320°)/ 2 , then 𝐴 + 𝐵 =?

If 𝐴 =
sqrt(1+cos 320°)/2

and 𝐵 = sqrt( 1−cos 320°)/ 2
, then 𝐴 + 𝐵 =

a) 𝑐𝑜𝑠160° − 𝑠𝑖𝑛160°
b) −𝑐𝑜𝑠160° + 𝑠𝑖𝑛160°
𝑐) 𝑐𝑜𝑠160° + 𝑠𝑖𝑛160°
d) −𝑐𝑜𝑠160° − 𝑠𝑖𝑛160°
e) 0

1 Answer
Apr 4, 2018

The correct answer is

-\cos(160°)+\sin(160°).

I cannot see the choices while answering so please find the corresponding letter.

Explanation:

Where we run into trouble is with signs. To get out of trouble we use the symmetry relations of trigonometric functions to get the argument between 0° and 90°.

We start with

\cos(360°-x)=\cos(x)

\cos(320°)=\cos(40°)

Then

\sqrt{{1+\cos(320°)}/2}+\sqrt{{1-\cos(320°)}/2}=\sqrt{{1+\cos(40°)}/2}+\sqrt{{1-\cos(40°)}/2}

Now apply the half angle formulas:

sin(x/2)=\pm\sqrt{{1-cos(x)}/2}

cos(x/2)=\pm\sqrt{{1+cos(x)}/2}

By making the argument between 0° and 90°, we assure tgat both signs are positive and thus we beat the sign problems:

\sqrt{{1+cos(40°)}/2}=\cos(20°)

\sqrt{{1-cos(40°)}/2}=\sin(20°)

So

\sqrt{{1+\cos(320°)}/2}+\sqrt{{1-\cos(320°)}/2}=\sqrt{{1+\cos(40°)}/2}+\sqrt{{1-\cos(40°)}/2}

=\cos(20°)+\sin(20°)

Now we can get an angle of 160° using these symmetry relations:

\sin(180°-y)=\sin(y)

\cos(180°-y)=-\cos(y)

Then

\cos(20°)+\sin(20°)=-\cos(160°)+\sin(160°).

I cannot see the multiple choices whilevwriting the answer so please pick the right letter accordingly.