We seek:
x=\cot \theta + \csc \theta + {1}/{\cot \theta - \csc \theta} + 1x=cotθ+cscθ+1cotθ−cscθ+1
Plug in \csc \theta={1}/{\sin \theta}cscθ=1sinθ, \cot \theta={\cos \theta}/{\sin \theta}cotθ=cosθsinθ, then:
x={\cos \theta}/{\sin \theta} + {1}/{\sin \theta} + {1}/{{\cos \theta}/{\sin \theta} - {1}/{\sin \theta}} + 1x=cosθsinθ+1sinθ+1cosθsinθ−1sinθ+1
x={\cos \theta+1}/{\sin \theta} + {\sin \theta}/{\cos - 1} + 1x=cosθ+1sinθ+sinθcos−1+1
x={\cos^2 \theta-1+\sin^2 \ theta}/{\sin \theta(\cos - 1)} + 1
But \sin^2 \theta + \cos^2 \theta =1 so the fraction cancels leaving just the constant 1.