How do you divide #3x^3+5x^2+2x-12# by #x+3#?
2 Answers
Explanation:
Let
Using long division of polynomial's
Where,
Explanation:
#"one way is to use the divisor as a factor in the numerator"#
#"consider the numerator"#
#color(red)(3x^2)(x+3)color(magenta)(-9x^2)+5x^2+2x-12#
#=color(red)(3x^2)(x+3)color(red)(-4x)(x+3)color(magenta)(+12x)+2x-12#
#=color(red)(3x^2)(x+3)color(red)(-4x)(x+3)color(red)(+14)(x+3)color(magenta)(-42)-12#
#=color(red)(3x^2)(x+3)color(red)(-4x)(x+3)color(red)(+14)(x+3)-54#
#"quotient "=color(red)(3x^2-4x+14)," remainder "=-54#
#rArr3x^3+5x^2+2x-12#
#=3x^2-4x+14-54/(x+3)#