What is the integrate of x^2/(x-1)^3 ?

2 Answers

#int x^2/(x-1)^3 dx=log|x-1|+2/(1-x)-1/(2(x-1)^2)+C#

Explanation:

Part 1

Decompose #x^2/(x-1)^3# into partial fractions

#x^2/(x-1)^3=A/(x-1)+B/(x-1)^2+C/(x-1)^3#

Where A, B and C are just numbers

So to solve, just merge those fractions

#x^2/(x-1)^3=(A(x-1)^2+B(x-1)+C)/(x-1)^3#
#=(Ax^2-2Ax+A+Bx-B+C)/(x-1)^3#

Rearranging

#x^2/(x-1)^3=(Ax^2+(B-2A)x+(A-B+C))/(x-1)^3#

By comparing coefficients, you can tell that

#A=1, B-2A=0, A-B+C=0#

Solving, you get #A=1, B=2 and C=1#

Hence #x^2/(x-1)^3=1/(x-1)+2/(x-1)^2+1/(x-1)^3#

Part 2

Substituting this back into the integral, you get

#int x^2/(x-1)^3 dx=int 1/(x-1) dx+int 2/(x-1)^2 dx+int 1/(x-1)^3 dx#

#int 1/(x-1) dx=log|x-1|+C#

Using the reverse power rule

#int 1/(x-1)^2 dx=int (x-1)^-2 dx=-1/(x-1)+C=1/(1-x)+C#

#int 1/(x-1)^3 dx=int (x-1)^-3 dx=-1/(2(x-1)^2)+C#

Hence
#int x^2/(x-1)^3 dx=log|x-1|+2/(1-x)-1/(2(x-1)^2)+C#

You can further simplify this to be

#int x^2/(x-1)^3 dx=log|x-1|+2/(1-x)-1/(2(x-1)^2)+C=(3-4x)/(2(x-1)^2)+log|x-1|+C#

P.S. Please classify this question as "Calculus", you are currently marking it as "algebra"

Apr 9, 2018

# ln|(x-1)|-2/(x-1)-1/(2(x-1)^2)+C#.

Explanation:

Have a look at this Second Solution :

Let, #I=intx^2/(x-1)^3dx#.

We subst. #x=1+t. :. dx=dt, and, (x-1)=t#.

#:. I=int(t+1)^2/t^3dt=int(t^2+2t+1)/t^3dt#,

#=int{t^2/t^3+2*t/t^3+1/t^3}dt#,

#=int{1/t+2*t^-2+t^-3}dt#,

#=ln|t|+2*t^(-2+1)/(-2+1)+t^(-3+1)/(-3+1)#,

#=ln|t|-2*t^-1-1/2*t^-2#.

# rArr I=ln|(x-1)|-2/(x-1)-1/(2(x-1)^2)+C#, as Respected

e52fa787 has already derived!