What is the antiderivative of ln(x^2 + 2x + 2)ln(x2+2x+2)?

1 Answer
Apr 9, 2018

xln(x^2+2x+2) - 2x + ln(x^2+2x+2)+2tan^-1x+Cxln(x2+2x+2)2x+ln(x2+2x+2)+2tan1x+C

Explanation:

The antiderivative of ln xlnx can be easily found out by integration by parts to be

int ln x dx = ln x - int (d/dx(ln x) times int 1 *dx)dxlnxdx=lnx(ddx(lnx)×1dx)dx
qquad = xln x-x+C

The antiderivative of the given function is

int ln(x^2+2x+2) dx = int ln[ (x^2+2x+2)]*1 dx

qquad = ln (x^2+2x+2)int 1 * dx
qquad -int [d/dx ln (x^2+2x+2) int 1.dx]dx
qquad = xln(x^2+2x+2) - int {x(2x+2)dx}/(x^2+2x+2)

Now

{2x(x+1)}/(x^2+2x+2) =2 {x^2+2x+2-x-2}/(x^2+2x+2)
qquad =2-(2x+4)/(x^2+2x+2)
qquad = 2-(2x+2)/(x^2+2x+2)-(2)/(x^2+2x+2)

and so

int {x(2x+2)dx}/(x^2+2x+2)
qquad = int [2-(2x+2)/(x^2+2x+2)-(2)/((x+1)^2+1)]dx
qquad = 2x- ln(x^2+2x+2)-2tan^-1x+C

Thus the required antiderivative is

xln(x^2+2x+2) - 2x + ln(x^2+2x+2)+2tan^-1x+C