How can you differentiate y=IN(x^2+3)?

1 Answer
Apr 9, 2018

Look below

Explanation:

You have 2 functions, ln(x) and x^2+3ln(x)andx2+3

apply the chain rule, u'(v)*v'

\frac{1}{x^2+3}*2x

\frac{2x}{x^2+3}

Prove if its right?

Integrate!

int \frac{2x}{x^2+3}dx

use u-substitution

u=x^2+3 -> dx = 1/(2x)du

int 1/u du = ln(u)

ln(x^2+3) +C