How do you simplifiy \sqrt { 1573x ^ { 7} y ^ { 2} z ^ { 4} }?

2 Answers
Apr 9, 2018

11|\x^3y|z^2sqrt(13x)

Explanation:

Let's find the perfect squares in the radical. Recall that sqrt(ab)=sqrt(a*b), sqrt(a^(b+c))=sqrt(a^b*a^c), and (a^b)^c=a^(b*c)=a^(bc)

sqrt(121*13*x^6*x*y^2*z^4) rarr 121, x^6, y^2, and z^4 are all perfect squares. They can be taken out of the radical.

11^2=121

(x^3)^2=x^6

y^2=y^2

(z^2)^2=z^4

11|\x^3y|z^2sqrt(13x) rarr Absolute value bars need to be placed around the odd exponents so that they are positive (not around the even ones)

Apr 10, 2018

sqrt(1573x^7y^2z^4)=11sqrt(13)x^(7/2)|y|z^2

Explanation:

sqrt(1573x^7y^2z^4)=sqrt(13)(11^2x^7y^2z^4)^(1/2)

=11sqrt(13)x^(7/2)|y|z^2.