How do I solve sin 2x=cos 3x ?

2 Answers
Apr 11, 2018

#x_1=2npi-pi/2#
#x_2=-pi/10+2npi/5#

Explanation:

Use #cos(theta)=sin(theta+pi/2)#
Therefore, #cos(3x)=sin(3x+pi/2)#

#sin(2x)=sin(3x+pi/2)#
#2x=+-(3x+pi/2)+2npi#
#n ∈ ZZ#

First case:
#0=x+pi/2+2npi#
#x=-pi/2-2npi=2npi-pi/2#

Second case:
#0=-5x-pi/2+2npi#
#x=-pi/10+2npi/5#

Apr 12, 2018

#x = (3pi)/2 + 2kpi#
#x = pi/10 + (2kpi)/5#

Explanation:

cos 3x = sin 2x
#cos 3x = cos (pi/2 - 2x) #
Unit circle, property of cos function give -->
#3x = +- (pi/2 - 2x)#
a. #3x = pi/2 - 2x#
#5x = pi/2 + 2kpi#
#x = pi/10 + (2kpi)/5#
b. #3x = - pi/2 + 2x#
#x = -pi/2 + 2kpi#, or
#x = (3pi)/2 + 2kpi# (co-terminal)