You have done almost all the heavy lifting here! The first of the two integrals is really simple,
35/12int 1/(x-2) dx = 35/12 ln|x-2|3512∫1x−2dx=3512ln|x−2|
so I am guessing you need help with the second:
1/12 int (61x+64)/(x^2+2x+4) dx112∫61x+64x2+2x+4dx
For this, note that
d(x^2+2x+4)=(2x+2)dx=2(x+1)dxd(x2+2x+4)=(2x+2)dx=2(x+1)dx
so that it makes sense to split up the numerator into
61x+64=61(x+1)+361x+64=61(x+1)+3
Then
1/12 int (61x+64)/(x^2+2x+4)dx=61/12 int (x+1)/(x^2+2x+4)dx +1/12 int 3/(x^2+2x+4)dx112∫61x+64x2+2x+4dx=6112∫x+1x2+2x+4dx+112∫3x2+2x+4dx
The first of these is
61/24 int (2(x+1)dx)/(x^2+2x+4) =61/24 ln(x^2+2x+4)6124∫2(x+1)dxx2+2x+4=6124ln(x2+2x+4)
while the second is
1/4 int (dx)/(x^2+2x+4) = 1/4 int dx/((x+1)^2+3) = 1/(4sqrt3) tan^-1((x+1)/sqrt3)14∫dxx2+2x+4=14∫dx(x+1)2+3=14√3tan−1(x+1√3)
Adding all the terms (including the int x^2 dx∫x2dx) we get the integral :
x^3/3+35/12 ln|x-2|+61/24 ln(x^2+2x+4)+1/(4sqrt3)tan^-1((x+1)/sqrt3)+Cx33+3512ln|x−2|+6124ln(x2+2x+4)+14√3tan−1(x+1√3)+C