Integrate. What is the next step ?

enter image source here

1 Answer
Apr 12, 2018

x^3/3+35/12 ln|x-2|+61/24 ln(x^2+2x+4)+1/(4sqrt3)tan^-1((x+1)/sqrt3)+Cx33+3512ln|x2|+6124ln(x2+2x+4)+143tan1(x+13)+C

Explanation:

You have done almost all the heavy lifting here! The first of the two integrals is really simple,

35/12int 1/(x-2) dx = 35/12 ln|x-2|35121x2dx=3512ln|x2|

so I am guessing you need help with the second:

1/12 int (61x+64)/(x^2+2x+4) dx11261x+64x2+2x+4dx

For this, note that

d(x^2+2x+4)=(2x+2)dx=2(x+1)dxd(x2+2x+4)=(2x+2)dx=2(x+1)dx

so that it makes sense to split up the numerator into

61x+64=61(x+1)+361x+64=61(x+1)+3

Then

1/12 int (61x+64)/(x^2+2x+4)dx=61/12 int (x+1)/(x^2+2x+4)dx +1/12 int 3/(x^2+2x+4)dx11261x+64x2+2x+4dx=6112x+1x2+2x+4dx+1123x2+2x+4dx

The first of these is

61/24 int (2(x+1)dx)/(x^2+2x+4) =61/24 ln(x^2+2x+4)61242(x+1)dxx2+2x+4=6124ln(x2+2x+4)

while the second is

1/4 int (dx)/(x^2+2x+4) = 1/4 int dx/((x+1)^2+3) = 1/(4sqrt3) tan^-1((x+1)/sqrt3)14dxx2+2x+4=14dx(x+1)2+3=143tan1(x+13)

Adding all the terms (including the int x^2 dxx2dx) we get the integral :

x^3/3+35/12 ln|x-2|+61/24 ln(x^2+2x+4)+1/(4sqrt3)tan^-1((x+1)/sqrt3)+Cx33+3512ln|x2|+6124ln(x2+2x+4)+143tan1(x+13)+C