Verify the identity of sec^6X(secXtanX)-sec^4X(secXtanX)=sec^5Xtan^3X ?

3 Answers
Apr 12, 2018

See below

Explanation:

sec^6x(secxtanx)-sec^4x(secxtanx)=sec^4xsecxtanx(sec^2x-1)=sec^5xtanxtan^2x=sec^5xtan^3x

Apr 12, 2018

sec^6X(secXtanX)-sec^4X(secXtanX)=sec^5Xtan^3X

Taking the LHS,

sec^6X(secXtanX)-sec^4X(secXtanX)

=>(sec^6X-sec^4X)(secXtanX)

=>sec^4X(sec^2X-1)(secXtanX)

=>sec^4X(tan^2X)(secXtanX) color(white)(ww ["as " color(red)(sec^2X-1 =tan^2X) ]

Getting the tanX and secX together,

=>sec^5Xtan^3X = RHS

Hence Verified ! :)

Apr 12, 2018

Please see below.

Explanation:

We know that,

color(red)((1)sec^2theta-1=tan^2theta

Here,

sec^6X(secXtanX)-sec^4X(secXtanX)=sec^5Xtan^3X

We take,

LHS=sec^6X(color(blue)(secXtanX))-sec^4X(color(blue)(secXtanX))

=color(blue)(secXtanX)(sec^6X-sec^4X)

=color(blue)(secXtanX)sec^4X(sec^2X-1)

=sec^5XtanX(color(red)(sec^2X-1))...toApply(1)

=sec^5XtanX(color(red)(tan^2X))

=sec^5Xtan^3X

=RHS