How do you solve 5x^2-6x-4=0 using the quadratic formula?

2 Answers
Apr 13, 2018

The roots are (3+sqrt29)/5 or (3-sqrt29)/5.

Explanation:

x=(-b±sqrt(b^2-4ac))/(2a)

x=6±sqrt((-6)^2-4*5*(-4))/(2*5)

x=(6±sqrt(36+80))/(10)

x=(6±sqrt(116))/(10)

x=(6±2sqrt(29))/(10)

x=(3±sqrt(29))/(5)

Therefore the roots can be (3+sqrt29)/5 or (3-sqrt29)/5.

Apr 13, 2018

Solution: x= 3/5 +- sqrt 29 /5

Explanation:

5 x^2- 6 x -4 =0

Comparing with standard quadratic equation ax^2+bx+c=0

a= 5 ,b=-6 ,c=- 4. Discriminant, D= b^2-4 a c or

D=36+80 =116, discriminant is positive, we get two real

solutions, Quadratic formula: x= (-b+-sqrtD)/(2a) or

x= (6 +- sqrt 116)/10 = 3/5 +- sqrt 29 /5

Solution: x= 3/5 +- sqrt 29 /5 [Ans]