lim_(t->-oo) sqrt(t^2+2t+7 ) -sqrt(t^2-2t+5)=?

lim_(t->-oo) sqrt(t^2+2t+7 ) -sqrt(t^2-2t+5)=?

1 Answer
Apr 13, 2018

The limit is -2

Explanation:

lim_(t->-oo) sqrt(t^2+2t+7 ) -sqrt(t^2-2t+5)

The initial form of the limit is indeterminate oo-oo.

Multiply by (sqrt(t^2+2t+7 ) + sqrt(t^2-2t+5))/(sqrt(t^2+2t+7 ) + sqrt(t^2-2t+5), to get

sqrt(t^2+2t+7 ) -sqrt(t^2-2t+5) = ((t^2+2t+7 ) - (t^2-2t+5))/( sqrt(t^2+2t+7 ) + sqrt(t^2-2t+5))

= (4t + 2)/( sqrt(t^2+2t+7 ) -sqrt(t^2-2t+5))

= (4t + 2)/( sqrt(t^2)sqrt(1+2/t+7/t^2 ) + sqrt(t^2)sqrt(1-2/t+5/t^2)) " " (for t != 0)

Now recall/note that sqrt(t^2) = abs(t) = {(t,"if",t >= 0),(-t,"if"t<0):}, so,

for t < 0, we have

sqrt(t^2+2t+7 ) - sqrt(t^2-2t+5) = (4t + 2)/( -tsqrt(1+2/t+7/t^2 ) -tsqrt(1-2/t+5/t^2)

= (t(4+2/t))/(-t(sqrt(1+2/t+7/t^2 ) + sqrt(1-2/t+5/t^2)))

= (-(4+2/t))/((sqrt(1+2/t+7/t^2 ) + sqrt(1-2/t+5/t^2)))

And now,

lim_(t->-oo) sqrt(t^2+2t+7 ) 1-sqrt(t^2-2t+5) = lim_(trarr-oo)-(4+2/t)/((sqrt(1+2/t+7/t^2 ) + sqrt(1-2/t+5/t^2)))

= -(4+ 0)/(sqrt(1+0+0)+sqrt(1+0+0))

= -4/2 = - 2.

Here is the graph of the function:

graph{sqrt(x^2+2x+7 ) -sqrt(x^2-2x+5) [-23.46, 22.15, -11.5, 11.3]}