#lim_(t->-oo) sqrt(t^2+2t+7 ) -sqrt(t^2-2t+5)#=?
#lim_(t->-oo) sqrt(t^2+2t+7 ) -sqrt(t^2-2t+5)# =?
1 Answer
The limit is
Explanation:
The initial form of the limit is indeterminate
Multiply by
# = (4t + 2)/( sqrt(t^2+2t+7 ) -sqrt(t^2-2t+5))#
# = (4t + 2)/( sqrt(t^2)sqrt(1+2/t+7/t^2 ) + sqrt(t^2)sqrt(1-2/t+5/t^2))# #" "# (for#t != 0# )
Now recall/note that
for
# = (t(4+2/t))/(-t(sqrt(1+2/t+7/t^2 ) + sqrt(1-2/t+5/t^2)))#
# = (-(4+2/t))/((sqrt(1+2/t+7/t^2 ) + sqrt(1-2/t+5/t^2)))#
And now,
# = -(4+ 0)/(sqrt(1+0+0)+sqrt(1+0+0))#
# = -4/2 = - 2.#
Here is the graph of the function:
graph{sqrt(x^2+2x+7 ) -sqrt(x^2-2x+5) [-23.46, 22.15, -11.5, 11.3]}