lim_(t->-oo) sqrt(t^2+2t+7 ) -sqrt(t^2-2t+5)=?
lim_(t->-oo) sqrt(t^2+2t+7 ) -sqrt(t^2-2t+5) =?
1 Answer
The limit is
Explanation:
The initial form of the limit is indeterminate
Multiply by
= (4t + 2)/( sqrt(t^2+2t+7 ) -sqrt(t^2-2t+5))
= (4t + 2)/( sqrt(t^2)sqrt(1+2/t+7/t^2 ) + sqrt(t^2)sqrt(1-2/t+5/t^2)) " " (fort != 0 )
Now recall/note that
for
= (t(4+2/t))/(-t(sqrt(1+2/t+7/t^2 ) + sqrt(1-2/t+5/t^2)))
= (-(4+2/t))/((sqrt(1+2/t+7/t^2 ) + sqrt(1-2/t+5/t^2)))
And now,
= -(4+ 0)/(sqrt(1+0+0)+sqrt(1+0+0))
= -4/2 = - 2.
Here is the graph of the function:
graph{sqrt(x^2+2x+7 ) -sqrt(x^2-2x+5) [-23.46, 22.15, -11.5, 11.3]}