What is the #6^(th)# term in the recursive formula sequence: #a_1=1#, #a_n=(a_(n−1))^2−10#?

2 Answers
Apr 14, 2018

#a_6=640644240524391#

Explanation:

#a_1=1, a_n=(a_(n-1))^2-10#

When #n=2, a_2=(a_1)^2-10=1^2-10=-9#

When #n=3, a_3=(a_2)^2-10=(-9)^2-10=71#

When #n=4, a_4=(a_3)^2-10=71^2-10=5031#

When #n=5, a_5=(a_4)^2-10=5031^2-10=25310951#

When #n=6, a_6=(a_5)^2-10=640644240524391#

Apr 14, 2018

the #6^(th)# term is #640644240524391#

Explanation:

We have a recursive sequence defined by:

# { (a_1=1), (a_n=(a_(n−1))^2−10) :}#

Then we set #n# accordingly and compute further terms:

# {: (n=1, => a_1=1, ,"(by definition)"), (n=2, => a_2=(a_1)^2−10, = 1-10, = -9), (n=3, => a_3=(a_2)^2−10, = 81-10, = 71), (n=4, => a_4=(a_3)^2−10, = 5041-10, = 5031), (n=5, => a_5=(a_4)^2−10, = 25310961-10, = 25310951), (n=6, => a_6=(a_5)^2−10, = 640644240524401-10, = 640644240524391) :} #

Thus, the #6^(th)# term is #640644240524391#