How do you solve 2 sin x - 1 = 02sinx−1=0 over the interval 0 to 2pi?
3 Answers
Explanation:
1/
2/
3/
4/
Apr 14, 2018
Explanation:
Apr 14, 2018
Explanation:
2sinx-1=02sinx−1=0
rArrsinx=1/2⇒sinx=12
"since "sinx>0" then x in first/second quadrant"since sinx>0 then x in first/second quadrant
rArrx=sin^-1(1/2)=pi/6larrcolor(blue)"first quadrant"⇒x=sin−1(12)=π6←first quadrant
"or "x=pi-pi/6=(5pi)/6larrcolor(blue)"second quadrant"or x=π−π6=5π6←second quadrant
rArrx=pi/6,(5pi)/6to(0,2pi)⇒x=π6,5π6→(0,2π)