How do you solve 2 sin x - 1 = 02sinx1=0 over the interval 0 to 2pi?

3 Answers
Apr 14, 2018

x = pi/6 , 5pi/6x=π6,5π6

Explanation:

1/ 2sin(x) - 1 = 02sin(x)1=0
2/ 2sin(x) = 12sin(x)=1
3/ sin(x) = 1/2sin(x)=12

4/ x = pi/6 , 5pi/6x=π6,5π6

Apr 14, 2018

x=pi/6 or (5pi)/6x=π6or5π6

Explanation:

2sin(x)-1=0|+12sin(x)1=0+1
2sin(x)=1|:22sin(x)=1:2
sin(x)=1/2sin(x)=12
x=arcsin(1/2)=pi/6 or (5pi)/6x=arcsin(12)=π6or5π6

Apr 14, 2018

x=pi/6,(5pi)/6x=π6,5π6

Explanation:

2sinx-1=02sinx1=0

rArrsinx=1/2sinx=12

"since "sinx>0" then x in first/second quadrant"since sinx>0 then x in first/second quadrant

rArrx=sin^-1(1/2)=pi/6larrcolor(blue)"first quadrant"x=sin1(12)=π6first quadrant

"or "x=pi-pi/6=(5pi)/6larrcolor(blue)"second quadrant"or x=ππ6=5π6second quadrant

rArrx=pi/6,(5pi)/6to(0,2pi)x=π6,5π6(0,2π)