Evaluate the integral by converting to polar coordinates \int_{0}^{sqrt3} \int_{y}^{sqrt(4-y^2)} (dxdy)/(4+x^(2)+y^(2)).?

1 Answer
Apr 14, 2018

int_0^sqrt2 int_y^sqrt(4-y^2)(dxdy)/(4+x^2+y^2)=1/8piln2

Explanation:

I will assume that the limits given in the question are wrong and that the actual integral is int_0^sqrt2 int_y^sqrt(4-y^2)(dxdy)/(4+x^2+y^2)

We are integrating the area between a circle of radius 4 centred at the origin and the function y=x.

We use x=rcostheta,y=rsintheta. The Jacobian J(r,theta)=del(x,y)"/"del(r,theta)=r so dxdy=rdrd theta. The limits are 0<=r<=2 and pi"/"4<=theta<=pi"/"2. Hence, we have

int_0^sqrt2 int_y^sqrt(4-y^2)(dxdy)/(4+x^2+y^2)=int_(pi/4)^(pi/2)int_0^2 r/(4+r^2) drd theta=int_(pi/4)^(pi/2) [1/2ln(4+r^2)]_0^2 d theta=int_(pi/4)^(pi/2)1/2ln2d theta=1/8piln2

A task for you would be to fill in the gaps above.