How do you integrate? int_sqrt(2)^2dx/(x^5*sqrt(x^2-1))22dxx5x21

int_sqrt(2)^2dx/(x^5*sqrt(x^2-1))22dxx5x21

1 Answer
Apr 14, 2018

int_sqrt2^2dx/(x^5sqrt(x^2-1))=int_(pi/4)^(pi/3)cos^4thetad theta22dxx5x21=π3π4cos4θdθ, which I leave to you to solve.

Explanation:

Try letting x=secthetax=secθ. Note this implies that dx=secthetatanthetad thetadx=secθtanθdθ.

Also, the bounds will change. Observe that x=sqrt2=>theta=pi/4x=2θ=π4 and x=2=>x=pi/3x=2x=π3.

Then:

int_sqrt2^2dx/(x^5sqrt(x^2-1))=int_(pi/4)^(pi/3)(secthetatanthetad theta)/(sec^5thetasqrt(sec^2theta-1))22dxx5x21=π3π4secθtanθdθsec5θsec2θ1

Recall the trigonometric identity sec^2theta-1=tan^2thetasec2θ1=tan2θ.

=int_(pi/4)^(pi/3)(secthetatanthetad theta)/(sec^5thetatantheta)=π3π4secθtanθdθsec5θtanθ

=int_(pi/4)^(pi/3)(d theta)/sec^4theta=π3π4dθsec4θ

=int_(pi/4)^(pi/3)cos^4thetad theta=π3π4cos4θdθ

From here, I would use the identity cos^2alpha=1/2(1+cos2alpha)cos2α=12(1+cos2α), or, in this case, cos^4alpha=1/4(1+cos2alpha)^2cos4α=14(1+cos2α)2 to further simplify the integral. It will definitely be a little messy.