How do you solve for #x#: #7+ a x = 14- bx#?

1 Answer
Apr 15, 2018

#x=\frac{7}{a+b}#

Explanation:

We have:

#7+ax=14-bx#

Isolate all the terms that contain #x# as a factor on the right hand side and move all the other terms to the left hand side:

#7+ax=14-bx\implies 7+ax+bx=14#

#\implies ax+bx=14-7=7#

Then, use the common factor #x# to group the terms:

#x(a+b)=7\implies x=\frac{7}{a+b}#

Note that this assumes that #a+b\ne 0#.