((cos^-1 (x))^2) - (sin^-1 (x)^2) = ?

1 Answer
Apr 16, 2018

picos^(-1)x-pi^2/4πcos1xπ24

Explanation:

We know that :

cos^-1 x + sin^-1 x = pi/2cos1x+sin1x=π2

rArr sin^-1 x = pi/2 -cos^-1 x sin1x=π2cos1x...........................(1)(1)

Put the value of (1)(1) in the question , we get :-

(cos^-1 x)^2 - (sin^-1 x)^2 = (cos^-1 x)^2 - (pi/2 -cos^-1 x )^2(cos1x)2(sin1x)2=(cos1x)2(π2cos1x)2

= (cos^-1 x)^2 -pi^2/4-(cos^-1 x)^2+picos^-1 x=(cos1x)2π24(cos1x)2+πcos1x

=cancel ((cos^-1 x)^2) -pi^2/4-cancel((cos^-1 x)^2)+picos^-1 x

=picos^-1 x-pi^2/4