What is the domain and range of h(x)=3x+1/x ?

1 Answer
Apr 18, 2018

Let #y=3x+1/x#

Domain of the function : #D_h : x# #ϵ# #R-{0}#

Range of the function : #R_h: y# #ϵ# #(- ∞ ,-2sqrt3]∪[2sqrt3, ∞ )#

Explanation:

The function is not defined for #x=0#.

#:.# The Domain of the function : #D_h : x# #ϵ# #R-{0}#

Y-axis is the vertical asymptote for this curve.

The function has a local maximum at #x=-1/sqrt3# and a local minimum at #x=1/sqrt3#

To find the minimum positive value attained by this function , take #x>0# and apply AM-GM inequality on #3x# and# 1/x#:-

#{3x+1/x}/2>=sqrt(3x.1/x)#

#rArr3x+1/x>=2sqrt3#

#:.y>=2sqrt3# for #x>0#

Similarly when #x<0# ; then #y<=-2sqrt3#

Thus the range of the function is :

#R_h: y# #ϵ# #(- ∞ ,-2sqrt3]∪[2sqrt3, ∞ )#

The graph of the function is given below :-

graph{3x+1/x [-22.8, 22.8, -11.4, 11.4]}