How to find out the derivative of (ln2)^x ?

1 Answer
Apr 18, 2018

#f'(x)=ln(ln(2))*ln^x(2)#

Explanation:

#f(x)=ln^x(2)#
because #u=e^ln(u)# and #ln(a^b)=bln(a)#
#f(x)=e^(xln(ln(2))#
Because #(e^(kx))'=ke^(kx)#
#f'(x)=ln(ln(2))e^(xln(ln(2))#
#f'(x)=ln(ln(2))*ln^x(2)#
\0/ here's our answer!