How Do You Prove:- ( cos x + sin x) ( cos x - sin x ) = 2 cos^ x-1 ??

1 Answer
Apr 18, 2018

See method below

Explanation:

(cosx + sinx)(cosx - sinx) = cos^2x- sin^2x (cosx+sinx)(cosxsinx)=cos2xsin2x

since cos^2x + sin^2x = 1 => cos^2x + sin^2x - 1 = 0cos2x+sin2x=1cos2x+sin2x1=0

Adding zero to the expression wont change the value and since cos^2x + sin^2x - 1=0cos2x+sin2x1=0 we can simply add that without changing the value of the expression.

(cosx + sinx)(cosx - sinx) = cos^2x- sin^2x + cos^2x + sin^2x - 1(cosx+sinx)(cosxsinx)=cos2xsin2x+cos2x+sin2x1

sin^2xsin2x cancels out

(cosx + sinx)(cosx - sinx) = cos^2x + cos^2x - 1(cosx+sinx)(cosxsinx)=cos2x+cos2x1
(cosx + sinx)(cosx - sinx) = 2cos^2x - 1(cosx+sinx)(cosxsinx)=2cos2x1