(cosx + sinx)(cosx - sinx) = cos^2x- sin^2x (cosx+sinx)(cosx−sinx)=cos2x−sin2x
since cos^2x + sin^2x = 1 => cos^2x + sin^2x - 1 = 0cos2x+sin2x=1⇒cos2x+sin2x−1=0
Adding zero to the expression wont change the value and since cos^2x + sin^2x - 1=0cos2x+sin2x−1=0 we can simply add that without changing the value of the expression.
(cosx + sinx)(cosx - sinx) = cos^2x- sin^2x + cos^2x + sin^2x - 1(cosx+sinx)(cosx−sinx)=cos2x−sin2x+cos2x+sin2x−1
sin^2xsin2x cancels out
(cosx + sinx)(cosx - sinx) = cos^2x + cos^2x - 1(cosx+sinx)(cosx−sinx)=cos2x+cos2x−1
(cosx + sinx)(cosx - sinx) = 2cos^2x - 1(cosx+sinx)(cosx−sinx)=2cos2x−1