Evaluate #int ( 8(e^x -1))/(7x) dx# as a power series.?

How do you evaluate this indefinite integral as a power series?

#int ( 8(e^x -1))/(7x) dx#

1 Answer
Apr 18, 2018

#C+8/7sum_(n=1)^oox^n/(n!(n))#

Explanation:

Rewrite the integral a bit:

#int(8e^x-8)/(7x)dx=int8/7x^-1e^x-8/7x^-1 dx#

Now, recall the power series expansion for #e^x# about #a=0:#

#e^x=sum_(n=0)^oox^n/(n!)#

Thus, we rewrite as

#int8/7x^-1sum_(n=0)^oox^n/(n!)-8/7x^-1 dx#

We may multiply in the #x^-1# into the series, as #x^-1x^n=x^(n-1)#

#int8/7sum_(n=0)^oox^(n-1)/(n!)-8/7x^-1 dx#

Let's evaluate the series at #n=0# to see if we can make #8/7x^-1# vanish:

The #0th# term of the series is #8/7x^-1/(0!)=8/7x^-1.#

So, we have

#int(cancel(8/7x^-1)+8/7sum_(n=1)^oox^(n-1)/(n!)-cancel(8/7x^-1))dx#

#int8/7sum_(n=1)^oox^(n-1)/(n!)dx=sum_(n=1)^oo8/7intx^(n-1)/(n!)dx#

Term-by-term integration yields

#C+8/7sum_(n=1)^oox^n/(n!(n))#